Liquid Helium (LHe) usage and storage at the South Pole

South Pole station is closed to cargo shipments for approximately 270 days each year.

It is desirable to maintain a LHe supply at the Pole during the period of closure. In recent years, this has been accomplished by shipping into Pole one or more LHe storage dewars, and transferring LHe from those dewars as needed during the winter. There has never been a transfer of LHe **between** storage dewars (although this has been extensively discussed), simplifying the analysis.

An assumption which further simplifies the analysis of the problem is this:

Each storage, temporary transport, or experimental dewar which uses or stores LHe causes the LHe ir

This is approximately true because the internal construction of a dewar conducts heat inwards to the LHe it holds at a roughly constant rate. (This rate is affected by temperature, and the temperature of the dewar's internal parts changes depending on how full it is, but this is a minor effect which is neglected here.) LHe is also evaporated in the process of transfer from storage to transport dewar and from transport dewar to experimental dewar; this loss is included below as part of the average loss from each dewar, since the transfers occur at regular intervals.

Under this assumption, each dewar has a "hold time" defined by:

hold time = $T_{dewar} = V_{dewar}/R_{dewar}$,

V_{dewar} = tot

 R_{dewar} = rate of evaporation from dewar.

Here are evaporation rates for some of the dewars used at the Pole:

1000 Gallon	Wessington 3820 I	temporary store 250 I	temporary store 100 I	AST/RO	SPARO	SPIFI	ACBAR	NOAA
R _{small}	Rwess	R ₂₅₀	R ₁₀₀	RASTRO	<i>R</i> sparo	RSPIFI	RACBAR	RNOAA
		3 liters/day	2 liters/day	7 litere/deu/	5.5	50 litere/dev/	10 litere/deu/	5 litere/dev/
	R _{small}	Gallon 38201	Gailon 38201 I Rsmall RWess R250 12 to 25 6 to 8 3	Gallon 38201 I I Rsmall RWess R250 R100 12 to 25 6 to 8 3 2	Gailon 38201 I I I Rsmall RWess R250 R100 RASTRO 12 to 25 6 to 8 3 2 7	Gallon 3820 I store 250 I store 100 I AST/RO SPARO Rsmall RWess R250 R100 RASTRO RSPARO 12 to 25 6 to 8 3 2 7 5.5	Gallon 38201 I <thi< th=""> I <thi<< td=""><td>Gallon 3820 1 I <thi< th=""> I <thi< td=""></thi<></thi<></td></thi<<></thi<>	Gallon 3820 1 I <thi< th=""> I <thi< td=""></thi<></thi<>

The devices R liters and devices set. As such that each dewar is in use for t devices and that the number of dewars is n. Then the total volume of LHe consumed is the sum:

Rbig tbig + n_{small} Rsmall tsmall + $n_{250}R_{250}$ t250 + $n_{100}R_{100}$ t100 + RASTRO tASTRO + RSPARO tSPARO + RSPIFI tSPIFI + RNOAA tNOAA = Vtotal

Each winter of operation can be laid out as a spreadsheet:

The winter of 1995 was a success, and a demonstration that winter-over LHe at Pole is possible.

Winter 1995					
	n	R (liters/day)	t (days)	<i>n*R*t</i> (liters)	

3000 gallon	1	17	270	4590
1000 gallon				
temp 250	3	3	270	2430
temp 100	3 I	4	-11	
AST/RO	1	7	270	1890
NOAA	1	5	270	1350
			total on site at c	closing = 10260

The winter of 1996 was a failure, because the 3000 gallon dewar was unavailable and the two 1000 gallon dewars only lasted until August 8:

	n	R (liters/day)	t (days)	n*R*t (liters)
3000 gallon				
1000 gallon	2	12	160	3840
temp 250	2	3	170	1020
temp 100				
AST/RO	1	7	170	1190
NOAA	1	5	170	850
			total or	n site at closing = 6900

The winter of 1998 was essentially identical to the winter of 1995:

	n	R (liters/day)	t (days)	n*R*t (liters)
3000 gallon	1	17	270	4590
1000 gallon				
temp 250	3	3	270	2430
temp 100				
AST/RO	1	7	270	1890
NOAA	1	5	270	1350
			total on s	site at closing = 10260

Winter 1999					1	
	n		R (liters/day)		t (days)	n*R*t (liters)
3000 gallon		1	3	0	250	7500
1000 gallon		1	2	0	90	1800
temp 250		2		3	270	1620
temp 100		3		2	30	180
AST/RO		1		7	270	1890
SPARO		1		8	60	480
SPIFI						
NOAA		1		5	270	1350
ontain helium a naintained and	after base therefore	e clos has	sing, an a high		total on s	site at closing = 14820
Vinter 2000 ha ontain helium naintained and nd an improve Winter 2000	after base therefore	e clos has	sing, an a high			site at closing = 14820
ontain helium a naintained and nd an improve	after base therefore	e clos has	sing, an a high			site at closing = 14820 <i>n*R*t</i> (liters)
ontain helium a naintained and ind an improve	after base therefore d boil-off	e clos has	sing, and a high for SPA <i>R</i> (liters/day)	0	Cuttin	
ontain helium a naintained and nd an improve Winter 2000 3000 gallon	after base therefore d boil-off	e clos e has rate	sing, and a high for SPA <i>R</i> (liters/day)	0	Cuttin t (days)	n*R*t (liters)
ontain helium a naintained and nd an improve Winter 2000	after base therefore d boil-off	e clos e has rate	sing, an a high for SPA <i>R</i> (liters/day) 4	0	Cuttin t (days)	n*R*t (liters)
ontain helium a naintained and nd an improve Winter 2000 3000 gallon 1000 gallon emp 250	after base therefore d boil-off	e clos e has rate	sing, an a high for SPA <i>R</i> (liters/day) 4		Cuttin t (days) 120	<i>n*R*t</i> (liters) 4800
ontain helium a aintained and nd an improve Vinter 2000 000 gallon 000 gallon emp 250 emp 100	after base therefore d boil-off	e clos e has rate 1 3	sing, an a high for SPA <i>R</i> (liters/day) 4	3	Cuttin t (days) 120 150	<i>n*R*t</i> (liters) 4800 1350
ontain helium a laintained and nd an improve Vinter 2000 3000 gallon 000 gallon emp 250 emp 100 AST/RO	after base therefore d boil-off	e clos e has rate 1 3 3	sing, an a high for SPA <i>R</i> (liters/day) 4	3 2 3	Cuttin <i>t</i> (days) 120 150 60	<i>n*R*t</i> (liters) 4800 1350 360
ontain helium a naintained and nd an improve Winter 2000 3000 gallon 1000 gallon	after base therefore d boil-off	e clos e has rate 1 3 3 1	sing, and a high for SPA <i>R</i> (liters/day) 4	3 2 3	Cuttin <i>t</i> (days) 120 150 60 150	<i>n*R*t</i> (liters) 4800 1350 360 450

Plans for 2001 call for three <u>Wessington storage</u> dewars, 3820 liter model CH-4000, for a total of 11460 liters on-station at base closing.

It is li succe	Even	
Wint		

	n	R (liters/day)	t (days)	n*R*t (liters)
3000 gallon	0			
Vessington 1	1	7	90	630
Vessington 2	1	7	180	1260
Vessington 3	1	7	270	1890
emp 250	2	3	270	1620
emp 100	3	2	60	360
AST/RO	1	7	270	1890
SPARO	1	5.5	90	495
SPIFI	0	50	60	C
TS	1	7	90	630
ACBAR	1	10	180	1800
NOAA	1	5	270	1350
			total need	ed for season = 11925
			actual amount on si	te = 11460

Additional helium is needed on-site at base closing. This can be accomplished by the delivery of additional helium, to be stored in other dewars. Suppose that six 250 liter dewars were full, in addition to the three Wessington dewars. These six 250 liter dewars would be used for the first 90 days after base closing, until their helium is gone:

	n	R (liters/day)	t (days)	n*R*t (liters)
3000 gallon	0			
Wessington 1	1	7	180	1260
Wessington 2	1	7	270	1890
Wessington 3	1	7	270	1890
temp 250	6	3	90	1620
temp 250	2	3	180	1080
temp 100	3	2	60	360
AST/RO	1	7	270	1890
SPARO	1	5.5	90	495
SPIFI	0	50	60	C
FTS	1	7	90	630

ACBAR	1	10	180	1800
NOAA	1	5	270	1350
			total needed for	r season = 14265
			actual amount on site	= 12960

Having helium on-site in dewars which have a short hold time does not help very much, as the above example shows. The total consumption goes up by an amount which consumes nearly all of the additional helium.

If instead the three Wessington dewars are supplemented by the 3000 gallon dewar, and it works better than it did in 2000, arriving at Pole half full with an improved evaporation rate, there will be a total of 16914 liters on-station at base closing. This plan is marginally compatible with a successful season, but still leaves some single points of failure. Staging of the dewars would provide some backup and margin.

	n	R (liters/day)	t (days)	n*R*t (liters)
3000 gallon	1	30	100	3000
Wessington	3	7	270	5670
temp 250	2	3	270	1620
temp 100	3	2	60	360
AST/RO	1	7	270	1890
SPARO	1	5.5	90	495
SPIFI	0	50	60	0
FTS	1	7	90	630
ACBAR	1	10	180	1800
NOAA	1	5	270	1350
			total need	ded at closing = 16815
			total available at clo	osing = 16914

A comparison of the two examples above shows the futility of attempting to preserve helium by transferring it to short hold-time dewars (the 250 liter dewars have a hold time of about 90 days) from a longer hold-time dewar (the 3000 gallon dewar has a hold time of 200 to 350 days, depending on how well it is working). It is crucial that the helium be stored in dewars that have intrinsically long hold times, the longer the better. The Wessington dewars have the best hold time of any dewars available to us.

The original CARA plan for 2001 reqested four Wessington dewars, for a total of 15280 liters on-station at base closing. The CARA plan called for unmodified dewars with a slightly lower boil-off rate. This plan would have also worked.

	n	R (liters/day)	t (days)	n*R*t (liters)	
8000 gallon	0				
lessington	4	6.5	270	7020	
emp 250	2	3	270	1620	
emp 100	3	2	60	360	
AST/RO	1	7	270	1890	
SPARO	1	5.5	90	495	
SPIFI	0	50	60	0	
TS	1	7	90	630	
ACBAR	1	10	180	1800	
NOAA	1	5	270	1350	
			total needed at closing = 15165		
			total available at closing = 15280		

These plans for the winter of 2002 are at present woefully inadequate, since SPIFI will be deployed after two seasons of non-deployment due to insufficient support.

	n	R (liters/day)	t (days)	n*R*t (liters)	
3000 gallon	0				
Wessington	3	7	270	5670	
temp 250	2	3	270	1620	
temp 100	3	2	60	360	
AST/RO	1	7	210	1470	
SPARO	1	5.5	90	495	
SPIFI	1	30	60	1800	
FTS	1	7	90	630	
ACBAR	1	10	180	1800	
NOAA	1	5	270	1350	
			total needed for season = 15195		
			actual amount on site = 11460		